Telegram Group & Telegram Channel
Как выбрать k для кросс-валидации?

Выбор k для кросс-валидации зависит от размера и природы ваших данных. Есть несколько рекомендаций:
▪️Для больших наборов данных часто используют меньшие значения k, чтобы сбалансировать точность оценки и вычислительные затраты.
▪️В целом, если ресурсы ограничены, стоит выбрать меньшее k.
▪️Максимальное значение k может быть равным размеру выборки, n. Тогда мы получаем метод leave-one-out (LOO), при котором каждый фолд состоит ровно из одного образца. Хорош для случаев, когда у нас очень мало данных и мы хотим использовать максимальное их количество для обучения модели.
▪️Также можно использовать stratified k-Fold. В этом случае каждый фолд имеет примерно такое же соотношение классов, как и всё исходное множество. Это может пригодиться, если данные несбалансированные.

#junior
#middle



tg-me.com/ds_interview_lib/139
Create:
Last Update:

Как выбрать k для кросс-валидации?

Выбор k для кросс-валидации зависит от размера и природы ваших данных. Есть несколько рекомендаций:
▪️Для больших наборов данных часто используют меньшие значения k, чтобы сбалансировать точность оценки и вычислительные затраты.
▪️В целом, если ресурсы ограничены, стоит выбрать меньшее k.
▪️Максимальное значение k может быть равным размеру выборки, n. Тогда мы получаем метод leave-one-out (LOO), при котором каждый фолд состоит ровно из одного образца. Хорош для случаев, когда у нас очень мало данных и мы хотим использовать максимальное их количество для обучения модели.
▪️Также можно использовать stratified k-Fold. В этом случае каждый фолд имеет примерно такое же соотношение классов, как и всё исходное множество. Это может пригодиться, если данные несбалансированные.

#junior
#middle

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/139

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Библиотека собеса по Data Science | вопросы с собеседований from no


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA